direct product, abelian, monomial, 2-elementary
Aliases: C22×C12, SmallGroup(48,44)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C12 |
C1 — C22×C12 |
C1 — C22×C12 |
Generators and relations for C22×C12
G = < a,b,c | a2=b2=c12=1, ab=ba, ac=ca, bc=cb >
Subgroups: 54, all normal (8 characteristic)
C1, C2, C2, C3, C4, C22, C6, C6, C2×C4, C23, C12, C2×C6, C22×C4, C2×C12, C22×C6, C22×C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C2×C12, C22×C6, C22×C12
(1 32)(2 33)(3 34)(4 35)(5 36)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 37)(24 38)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 13)(11 14)(12 15)(25 47)(26 48)(27 37)(28 38)(29 39)(30 40)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15)(25,47)(26,48)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)>;
G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15)(25,47)(26,48)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,37),(24,38)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,13),(11,14),(12,15),(25,47),(26,48),(27,37),(28,38),(29,39),(30,40),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)]])
C22×C12 is a maximal subgroup of
C12.55D4 C6.C42 C12.48D4 C23.26D6 C23.28D6 C12⋊7D4
48 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4H | 6A | ··· | 6N | 12A | ··· | 12P |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 |
kernel | C22×C12 | C2×C12 | C22×C6 | C22×C4 | C2×C6 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 2 | 8 | 12 | 2 | 16 |
Matrix representation of C22×C12 ►in GL3(𝔽13) generated by
12 | 0 | 0 |
0 | 12 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 12 |
12 | 0 | 0 |
0 | 11 | 0 |
0 | 0 | 8 |
G:=sub<GL(3,GF(13))| [12,0,0,0,12,0,0,0,1],[1,0,0,0,1,0,0,0,12],[12,0,0,0,11,0,0,0,8] >;
C22×C12 in GAP, Magma, Sage, TeX
C_2^2\times C_{12}
% in TeX
G:=Group("C2^2xC12");
// GroupNames label
G:=SmallGroup(48,44);
// by ID
G=gap.SmallGroup(48,44);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-2,120]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^12=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations